

Fast fMRI Acquisitions and Analyses Spinoza User Meeting

Saskia Bollmann

Centre for Advanced Imaging, The University of Queensland 7T NIF Facility Fellow (Acting)

Overview

Acquisitions

- Echo-Planar Imaging (EPI)
- Simultaneous Multislice (SMS) / Multiband
- Advanced Methods
 - Line Scanning
 - Inl
 - MREG
 - T-Hex

Analyses (Applications)

- Block Designs
- Dynamic Stimuli
- DCMs
- Physiology
- EEG-FMRI
- Time-Varying Functional Connectivity

- + Challenges
- Spatial Correlations
- Temporal Correlations

Acquisitions

Echo-Planar Imaging (EPI) Simultaneous Multislice (SMS) / Multiband Advanced Methods

Echo-Planar Imaging (EPI)¹

• One slice is excited and the complete 2D k-space is read out in a couple of tens of milliseconds

¹Mansfield, 1977, J Phys C Solid State Phys

Acquisitions

Echo-Planar Imaging (EPI) Simultaneous Multislice (SMS) / Multiband Advanced Methods

Simultaneous Multislice (SMS) / Multiband^{1,2}

Uğurbil, 2013, NI

Simultaneous Multislice (SMS) / Multiband^{1,2,3}

¹Maudsley, 1980, JMR; ²Müller, 1988, MRM; ³Larkman et al., 2001, JMRI; ⁴Breuer et al., 2005, MRM

8

Simultaneous Multislice (SMS) / Multiband^{1,2,3}

¹Maudsley, 1980, JMR; ²Müller, 1988, MRM; ³Larkman et al., 2001, JMRI; ⁴Breuer et al., 2005, MRM, ⁵Setsompop et al., 2012, MRM

Simultaneous Multislice (SMS) / Multiband – Success

- MULTIBAND EPI

Feinberg et al., 2010, PLoS ONE

Uğurbil et al., 2013, NI

Simultaneous Multislice (SMS) / Multiband – Summary

Advantages

- Increased SNR efficiency (\sqrt{N})
- Increased sampling rate

Disadvantages

- g-factor penalty
- Slice-leakage

Uğurbil, 2013, NI

Acquisitions

Echo-Planar Imaging (EPI) Simultaneous Multislice (SMS) / Multiband Advanced Methods

Yu et al., 2014, Nature Methods; not replicated by Albers et al., 2018, NI

Line Scanning in Humans resolution 3 mm x 3 mm x 200 µm TR = 100 msMapping human cortical layers Orientation using line-scanning fMRI **Tuning Strength** S_o Values **Receptive Field** Size T₂* Values White Infragranular Supragranular Layer 4 Matter Layers Layers Cerebrospinal (Gennari Line) Fluid

Dynamic Inverse Imaging (InI)¹

- Inspired by MEG source localization
- No spatial encoding with gradients
- Solves under-determined inverse (and ill-posed) problem (e.g. MNE)
- Needs spatial prior to resolve dynamic images

MR-Encephalography (MREG)¹

 no readout → one voxel one coil (OVOC²)

¹Hennig et al., 2007, NI; Hennig et al., 2021, Magn Reson Mater Phy; ²Hutchinson and Raff, 1988, MRM

MR-Encephalography (MREG)¹

- no readout → one voxel one coil (OVOC²)
- a little bit of encoding
 - stack-of-spirals trajectory³

¹Hennig et al., 2007, NI; Hennig et al., 2021, Magn Reson Mater Phy; ²Hutchinson and Raff, 1988, MRM; ³Assländer et al., 2013, NI

MR-Encephalography (MREG)¹

- no readout → one voxel one coil (OVOC²)
- a little bit of encoding
 - stack-of-spirals trajectory³
- example
 - BOLD-arrival-time mapping in 160 seconds

resolution >> 3 mm TR = 100 ms

¹Hennig et al., 2007, NI; Hennig et al., 2021, Magn Reson Mater Phy; ²Hutchinson and Raff, 1988, MRM; ³Assländer et al., 2013, NI

T-Hex: Tilted Hexagonal Grids for Rapid 3D Imaging¹

 3D readout strategy with flexible and timeefficient k-space segmentation, smooth T2*weighting, uniform sampling density, and high average speed along trajectories

¹Engel et al., 2020, MRM; ²Engel et al, 2019, ISMRM

T-Hex: Tilted Hexagonal Grids for Rapid 3D Imaging¹

 3D readout strategy with flexible and timeefficient k-space segmentation, smooth T2*weighting, uniform sampling density, and high average speed along trajectories

resolution 2.8 mm $TR = 200 ms^2$

¹Engel et al., 2020, MRM; ²Engel et al, 2019, ISMRM

Advanced Methods - Summary

- Offer temporal resolution 20 200 ms
- Challenges
 - Line scanning \rightarrow small FOV + susceptibility to motion
 - Inl
 - MREG hardware requirements + computational complexity
 - T-Hex

Challenges

Spatial correlations

Temporal correlations

False-Positive Activation due to Signal Leakage between Simultaneously Excited Slices

@ 3T with 32-channel coil, GRAPPA 2

Todd et al., 2016, NI

Strong Variability in Resting-State Networks at High Acceleration Factors

	M1	M2	M3	M4		M1	M2	М3	M4
pDMN					Motor				
Auditory					Visual				
Somatosens					Salience				

@ 3T with 32-channel coil, SENSE 2

Preibisch et al., 2015, PLOS One

Slice-Leakage in the HCP 100 Release¹

motor task

@ 3T with 32-channel coil ¹Risk et al., 2018, NI; Cauley et al., 2014, MRM

As much acceleration as necessary, as little as possible!

Challenges

Spatial correlations

Temporal correlations

Temporal (Serial, Auto)-Correlation of the Noise

 Increased number of sampling points does not increase the degrees of the freedom at the same rate, because of serial correlations in the noise¹

Moeller et al., 2010, MRM; Same TR and number of volumes

Feinberg et al., 2010, PloS ONE; Mixture-modelling

Increased false-positive rates^{1,2,3,4,5}

Chen et al., 2019, NI

¹Eklund et al., 2012, NI; ²Sahib et al., 2016, MRM; ³Bollmann et al., 2018, NI; ⁴Corbin et al., 2018, HBM; ⁵Olszowy et al., 2019, Nat Com

Noise Spectrum in Fast Acquisitions

Bollmann et al., 2018, NI

Better pre-whitening performance

- AFNI: ARMA(1,1)
- SPM: FAST

On the Analysis of Rapidly Sampled fMRI Data¹

Task

Normalized statistical gains in 'GLM-based task activation'

More statistical gains for

• Faster task

On the Analysis of Rapidly Sampled fMRI Data¹

Task

More statistical gains for

- Faster task
- Less white noise

On the Analysis of Rapidly Sampled fMRI Data¹

Task

More statistical gains for

- Faster task
- Less white noise
- Less serial correlations

¹Chen et al., 2019, NI

Bonus Slide

Slice Timing Correction for Fast fMRI Data

- Benefits of slice-timing correction assumed to be negligible for fast acquisitions¹
- Temporal and dispersion derivates are assumed to account for shifts < 1 second²

¹Gasser et al., 2013, NI; ²Sladky et al., 2011, NI; ³Parker and Razlighi, 2019, Front. Neurosci.

Applications

Block Designs Dynamic Stimuli DCMs Physiology EEG-FMRI Time-Varying Functional Connectivity

Impact

Applications **Block Designs** Dynamic Stimuli DCMs Physiology **EEG-FMRI Time-Varying Functional Connectivity**

Benefits of Fast Sampling for Group Studies with Block-Designs

'While results will not be dramatically changed by the use of multiband, our results suggest that MB will bring a moderate but significant benefit.'¹

'In this experiment inter-subject variability determined the sensitivity of the random effects analysis for most brain regions, making the impact of EPI pulse sequence improvements less relevant or even negligible for random-effects analyses.'²

On Random-Effects Models and Unbiased Estimates

The hierarchical random-effects model (mixed-effects model) has

variance
$$Var[\widehat{w}_{pop}] = \frac{\sigma_b^2}{N} + \frac{\sigma_w^2}{Nn}$$

→ Between-subject variance (σ_b^2) usually far outweighs the within-subject variance $(\sigma_w^2)^1$

The pseudoinverse of X produces an unbiased effect estimate (β) – even when neglecting serial correlations or using a wrong correlation model²

Applications Block Designs Dynamic Stimuli DCMs Physiology **EEG-FMRI Time-Varying Functional Connectivity**

Fast fMRI Can Detect Oscillatory Neural Activity in Humans¹ resolution 2.5 mm iso TR = 246 ms

¹Lewis et al., 2016, PNAS

5

Applications

Block Designs Dynamic Stimuli DCMs Physiology EEG-FMRI Time-Varying Functional Connectivity

Model 3

 \mathbf{X}_2

U,

x₅

X.

Model 2

X.

 X_2

U_

 \mathbf{x}_2

Model 5

X5

 X_5

X.

X₂

×2

U,

Regression DCM for fMRI

endogenous

driving inputs

Applications

Block Designs Dynamic Stimuli DCMs Physiology EEG-FMRI Time-Varying Functional Connectivity

Model-Based Physiological Noise Removal in Fast fMRI¹

- Estimates physiological noise based on the fast fMRI data (TR < 0.5)
- Joint estimation (and removal) of physiological noise and autocorrelation
- Windowed estimation approach to let amplitude and frequency vary over time

Ultrafast Scanning as a Tool for Physiological Pulse Mapping¹

¹Hennig et al., 2020, Magn Reson Mater Phy

Applications

Block Designs Dynamic Stimuli DCMs Physiology EEG-FMRI

Time-Varying Functional Connectivity

EEG-fMRI

Higher statistical power Success also with few spike events

Jacobs et al., 2014, NI; Safi-Harb et al., 2015; NI

'links between the network dynamics at fast sub-second time-scales, accessible with EEG, and brain network activity at slower (>1sec) time-scales in fMRI'

Hunyadi et al., 2019, NI; Chang and Chen, 2021, COBME

Applications

Block Designs Dynamic Stimuli DCMs Physiology EEG-FMRI

Time-Varying Functional Connectivity

Time-Varying Functional Connectivity

- 'The brain is a complex, multiscale dynamical system composed of many interacting regions.'1
- 100 5-minute runs showed that 86% of the grey matter became significantly active²
- Denser temporal sampling might support
 - smaller window sizes
 - various HRF models
 - single-trial analyses

TVFC ESTIMATION (e.g. SLIDING WINDOW)

Applications

Block Designs Dynamic Stimuli DCMs Physiology EEG-FMRI Time-Varying Functional Connectivity

Impact ?

Acknowledgements

Markus Barth Simon Robinson Lars Kasper Barth Group @ CAI

CRICOS code 00025B

National Imaging Facility

