

Signal Sources and Acquisition Choices for Columnar and Laminar fMRI

Saskia Bollmann

Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia

7T National Imaging Facility Fellow (Acting)

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States Department of Radiology, Harvard Medical <u>School, Charlestown, United States</u>

Cortical Architecture

Measuring brain function using functional MRI

- 2 main partitioning axes of the cortex¹
 - perpendicular to the surface \rightarrow laminar
 - parallel to the surface \rightarrow columnar
- fMRI measures tightly controlled² vascular response following activity in large ensembles of neurons³
- high-resolution fMRI at ultra-high field provides the necessary resolution and sensitivity⁴ to resolve *depth-dependent⁵* and *topographic*⁶ signals

¹Harris and Mrsic-Flogel, Nature, 2013; Shamir and Assaf, medRxiv, 2020

²Silva and Koretsky, PNAS, 2002; Sheth et al., J Neurosci, 2004; Hillman et al., NI, 2007; Tian et al., 2010, PNAS ²Iadecola, Nat Neurosci Reviews, 2004

⁴Bollmann and Barth, Progress in Neurobiology, 2020 (in print)

⁵Barth and Norris, NMR Biomed, 2007; Polimeni et al., NI, 2010; Olman et al., PlosOne, 2012; Huber et al., Neuron, 2017 ⁶Engel et al., Nature, 1994; Sereno et al., Science, 1995; Wandell et al., Neuron, 2007; Silver and Kastner, Trends in Cogn Sciences, 2009; Sanchez-Panchuelo et al., J Neurosci, 2012; Besle et al., J Neurphysiology, 2013; Puckett et al., Neuroimage, 2017; Wessinger et al., HBM, 1997; Bilecen et al., Hearing Research. 1998; Talavage et al., J Neurphysiology, 2004; Ahveninen et al., NI, 2016

High-resolution fMRI | 2020-20-21

Amunts et al., Science, 2013 Logothetis, Science, 2008

High-resolution fMRI acquisition

- high-resolution fMRI \rightarrow sub-millimetre resolution
- majority of studies utilize a 3D EPI acquisition

2D EPI

High-resolution fMRI acquisition

- high-resolution fMRI \rightarrow sub-millimetre resolution
- majority of studies utilize a 3D EPI acquisition
 - higher temporal SNR than 2D at sub-millimetre resolution¹

High-resolution fMRI acquisition

- high-resolution fMRI \rightarrow sub-millimetre resolution
- majority of studies utilize a 3D EPI acquisition
 - higher temporal SNR than 2D at sub-millimetre resolution¹
 - low SAR/better slice profile
- current parameter 'optimum'
 - 0.7 1 mm resolution
 - 25 35 ms TE
 - 2-3 s TR (partial coverage)
 - R = 4
 - 6/8 no PF
- current limitations
 - image fidelity (blurring & B₀)
 - resolution/TE

G) 0.79 mm T $_2^*$ (functional EPI)

Huber et al., NI, 2020

Modelling depth-dependent fMRI signal changes in human V1¹

Atena Akbari

¹Markuerkiaga et al., NI, 2016; Akbari et al., ISMRM, 2020; ²Poser et al., NI, 2014; ³Huber et al., MRM, 2014

Modelling laminar fMRI signal changes in human V1¹ blood oxygenation cerebral blood volume

blood-oxygen-level dependent (BOLD)

T₂^{*}

SS-SI-VASO¹

3D EPI readout²

voxel size = 0.8mm x 0.8mm x 0.8 mm

 $TR = 2 \times 2500 \text{ ms}$

TE = 26 ms

TI = 650 ms

FOV = 160mm x 160mm x 21mm

 $T_{ACQ} = 51 \text{ min}$

vascular-space-occupancy (VASO)

Measuring the effects of attention to individual fingertips in somatosensory cortex¹

Ashley York Alex Puckett

¹Puckett et al., NI, 2017; York et al., ISMRM, 2020 ²Poser et al., NI, 2010

UHF Australia Workshop

Measuring the effects of attention to individual fingertips in somatosensory cortex¹

3D EPI readout²

voxel size = 0.8mm x 0.8mm x 0.8mm

TR = 2000 ms

TE = 30 ms

FOV = 160mm x 160mm x 39mm

 $T_{ACQ} = 60 \text{ min (per condition)}$

attention

¹Puckett et al., NI, 2017; York et al., ISMRM, 2020 ²Poser et al., NI, 2010

Measuring brain function using functional MRI

- 2 main partitioning axes of the cortex³
 - perpendicular to the surface \rightarrow laminar
 - parallel to the surface \rightarrow columnar
- fMRI measures tightly controlled¹ vascular response following activity in large ensembles of neurons²
- high-resolution fMRI at ultra-high field provides the necessary resolution and sensitivity⁴ to resolve *depth-dependent⁵* and *topographic*⁶ signals

¹Silva and Koretsky, PNAS, 2002; Sheth et al., J Neurosci, 2004; Hillman et al., NI, 2007; Tian et al., 2010, PNAS ²Iadecola, Nat Neurosci Reviews, 2004

³Harris and Mrsic-Flogel, Nature, 2013; Shamir and Assaf, medRxiv, 2020

⁴Bollmann and Barth, Progress in Neurobiology, 2020 (in print)

⁵Barth and Norris, NMR Biomed, 2007; Polimeni et al., NI, 2010; Olman et al., PlosOne, 2012; Huber et al., Neuron, 2017 ⁶Engel et al., Nature, 1994; Sereno et al., Science, 1995; Wandell et al., Neuron, 2007; Silver and Kastner, Trends in Cogn Sciences, 2009; Sanchez-Panchuelo et al., J Neurosci, 2012; Besle et al., J Neurphysiology, 2013; Puckett et al., Neuroimage, 2017; Wessinger et al., HBM, 1997; Bilecen et al., Hearing Research. 1998; Talavage et al., J Neurphysiology, 2004; Ahveninen et al., NI, 2016

white matter

High-resolution fMRI | 2020-20-21

Amunts et al., Science, 2013 Logothetis, Science, 2008

Contrast mechanism in time-of-flight (TOF) angiography

Blood deliver time

Architecture of the pial arterial vasculature

Duvernoy, Springer, 2000

High-resolution fMRI | 2020-20-21

- blood delivery times¹
 - 200 700 ms
- imaging regime of small vessels²
 - Ø ≤ 200 µm
- branching pattern³
 - right-angled

¹Alsop et al., MRM, 2015 ²Duvernoy et al., Brain Research Bulletin, 1981 ³Rowbotham and Little, Br. J. Surg., 1965

Effect of voxel size on time-of-flight contrast

@ 200 µm 1000 900 relative flow-related enhancement 800 3 blood delivery time (ms) 700 600 500 - 46 % 400 75 % 300 200 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 isotropic voxel size (mm)

Haacke et al., MRM, 1990 von Morze et al., JMRI, 2007 Mattern et al., MRM, 2018

Pial arterial vasculature I

TR = 20 ms **θ** = 18° TE = 6.56 msslab thickness = 8.32 mm GRAPPA = 2 $T_{ACQ} =$ 11 min 16 s

6 slabs

Pial arterial vasculature II

TR = 20 ms **θ** = 18° TE = 6.99 msslab thickness = 7.28 mm $T_{ACQ} =$ 21 min 53 s 3 slabs prospective motion correction

Mattern et al., MRM, 2018 High-resolution fMRI | 2020-20-21

Empirical results: effect of voxel size

0.16 x 0.16 x 0.16 mm³

0.14 x 0.14 x 0.14 mm³

Conclusion

- High-resolution (f)MRI is a valuable tool to study human brain function
 - versatile \rightarrow various contrast mechanisms
 - non-invasive \rightarrow characterize variability
 - large field-of-view \rightarrow brain as a network
- Current limitations are acquisition related, not physiological
 - address venous bias through modelling or acquisition
 - main limitation is the image encoding

Thank you

Markus Barth Alex Puckett Ashley York Atena Akbari Simon Robinson Nicole Atcheson Aiman Al-Najjar Jonathan Polimeni Michaël Bernier Daniel Park Avery Berman

Oliver Speck Hendrik Mattern

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

National Institutes of Health

Australian Government

National Health and Medical Research Council

