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(Re-)Sources

*SPM Course Slides from

« Klaas Enno Stephan, Jean-Baptiste Poline, Rik Henson, Christian Ruff,
Jakob Heinzle, Frederike Petzschner, Sandra Eglesias

http://imaging.mrc-chu.cam.ac.uk/imaging/Cbhulmaging
http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=spm
http://www.fil.ion.ucl.ac.uk/spm/course/video/
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http://imaging.mrc-cbu.cam.ac.uk/imaging/CbuImaging
http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=spm
http://www.fil.ion.ucl.ac.uk/spm/course/video/
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Terms & Definitions

SOA =

Stimulus
Onset 2
Asynchrony |

Stimuli

Time (s)
0 16 32 48 64 80
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Terms & Definitions

Epochs Events

- periods of sustained stimulation * impulses (delta-functions)

- in SPM defined by duration > 0 * in SPM defined by duration=0
Boxqar Delta
function

functions
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Terms & Definitions

Near-identical regressors can be created by
sustained epochs
rapid (SOAs<~3s) series of events

An “epoch’
model will
estimate
parameters
(B) that
decrease
with SOA o
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An “event”
model will
estimate

parameters

(B) that
increase
with SOA
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Terms & Definitions

*Designs can be: blocked or intermixed
*Models can be: epoch or event-related

.|:|| Ll ] ‘|...|..I"|"“:|‘||| AN NN NN
T T T T T T both are

O1 02 O3 N2 N3 blocked

designs!

“Event”

-----
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SPM Overview

Image time-series  Kernel Design matrix Statistical parametric map (SPM)

//
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The General Linear Model

Let us do an fMRI
experiment

7/ cycles of rest and ‘
listening

time
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The General Linear Model

Question: Where in the brain do we see a change in BOLD activity comparing
listening to rest?

What we measure in one region

3

single

voxel

time series /'t
1] i
' i
2k -
6 10 20 30 a0 =0 50 70 = o0 100

)}‘ What we know.
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The General Linear Model

Question: Where in the brain do we see a change in BOLD activity comparing
listening to rest?

20r What we measure in another
w1 region

116 H
114
12
10

108

response at [62, -28, 10]

106 |

e
i
1000

What we know.
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The General Linear Model

We fit one model per voxel ! (= mass-univariate approach)

r amplitude

O

For every voxel
in the brain we
Temporal have one time
' course!
series fMRI
=>each Volume
I e
contains about = _
illi - time course
2 million voxels =
at one time = of one voxel
point = THE UNIVERSITY
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The General Linear Model

Fitting the model = finding the best estimate of the betas by minimising the error
(often named residuals )

The ,,height* of the fitted
regressor is the [ value

(—> you end up with 2
million betas in the brain -
for each voxel there is one

beta)

regressor is fitted to the data by height
adjustment, the beta tells us the height of THE UNIVERSITY
the regressor to get the smallest error! aar/p OF QUEENSLAND
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The General Linear Model

*The computation of the betas is done by Ordinary Least Squares (OLS)

If we can assume that the noise is i.i.d.

e~N(0,0%])

*Then we can compute the betas and get the optimal solution, which
minimizes the error between the design matrix X and
ourdatay

B=XTX)"1XTy
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The General Linear Model

*Why does OLS give us the optimal betas?

*Our model should predict our data y =X ,B

*The error between predicted and measured data e=y—75
*Qur goal is to minimize the quadratic error by A
adjusting the betas e=y—Xp
*The sum of squared residuals (RSS) is e'e

S0 we can write: ele = (y —X,B)'(y — Xp)

«And some rewriting: , , AL At A
e'e=y'y=20'X'y+ B'X'XP
Taking the derivative of this with respect to beta and

solving for beta gives us the solution:

p=X"X)"X"y
THE UNIVERSITY
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The General Linear Model

90 100 110 1
| | |
— + +
voxel time experimental  Mean value Residual
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The General Linear Model
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The General Linear Model

In SPM it looks like this:

|
P
+
==
N
+

error

<
[
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The General Linear Model

using a matrix notation we get:

$ 3
\o *\ 9
(X, A <
40 &\‘Q &‘b 0\'0
o o &
of. .o X >
R ® <
e e
—
- E—
E—
I P ==
_ —
— - X + —
P =
- I
- —
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The General Linear Model

*We have to solve 3 Problems to make it work in reality

1.The BOLD response is sluggish and we need to take the shape of the
response into account

2.0ur Scanner is not as stable as we wish — we need to handle low
frequency drifts in the data

3.We have to deal with serial correlations in the data
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The General Linear Model

*We have to solve 3 Problems to make it work in reality

1.The BOLD response is sluggish and we need to take the shape of the
response into account

2.0ur Scanner is not as stable as we wish — we need to handle low
frequency drifts in the data

3.We have to deal with serial correlations in the data
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The General Linear Model — Problem 1

The regressors are convolved with
the so called “haemodynamic <«— Peak
response function (HRF)

Brief
Stimulus

Undershoot

A\ 4

Ly ’

<«—Initial
Undershoot

0 5 0 15 2 pgr
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The General Linear Model — Problem 1
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blue = data

red = predicted response, NOT taking into account the HRF
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HRF height (au)

\ bV
of \ g —
-1F
0 5 10 15 20
PST (s)

The General Linear Model — Problem 1

N

Canonical
Temporalal Derivative
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In SPM one usually uses
an informed basis set to
account for different
shapes of the HRF
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The General Linear Model

We have to solve 3 Problems to make it work in reality

1.The BOLD response is sluggish and we need to take the shape of the
response into account

2.0ur Scanner is not as stable as we wish — we need to handle low
frequency drifts in the data

3.We have to deal with serial correlations in the data
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The General Linear Model

113
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Scans
blue =  data
red = predicted response, NOT taking into account low-frequency drift
= predicted response, taking into account low-frequency drift
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The General Linear Model

We have to solve 3 Problems to make it work in reality

1.The BOLD response is sluggish and we need to take the shape of the
response into account

2.0ur Scanner is not as stable as we wish — we need to handle low
frequency drifts in the data

3.We have to deal with serial correlations in the data
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The General Linear Model

We have to model serial correlations, e.g. by using an autoregressive model of
the order one (takes one volume as history into account => AR(1))

We estimate so called hyper parameters during the estimation process using
ReML (restricted maximum likelihood)

:llﬂ lzk
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The General Linear Model - Summary

*We put in our model regressors that represent how we think the signal is
varying
*The regressors are convolved with the so called ,,haemodynamic response

function® (HRF) to account for the slow BOLD response

Coefficients ( = parameters or betas) are estimated by minimizing the residuals

( = the error)
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Part 2
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SPM Overview

Image time-series  Kernel Design matrix Statistical parametric map (SPM)

1

Realignment|— Smoothing |— General linear model

l ‘ l Statistical Gaussian
| -‘- inference field theory
Normalisation I

|
&

P <0.05
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Statistical Inference

We want to test whether our experimental manipulation changed the data
significantly -> Let‘s simply use a T test for that

contrast of
estimated
parameters

variance
estimate
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Statistical Inference

A contrast vector c selects a specific effect of interest

contrast of
estimated

b
parameters C ﬂ

T = =
variance e R ~
\I estimate \I Szc an(XX)C'
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Statistical Inference

The contrast vector c is just a vector with 1s and 0s and it selects
the betas we want to investigate

=11 + 052 + 083 + 0B + -

contrast of

estimated
parameters C ’ ﬂ
T= -
. N\ 2 ) » N
J variance \I s%c’inv(X’X)c
estimate
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Statistical Inference

The contrast ¢ is just a vector with 1s and 0s and it weights the betas we want to
investigate

¢c’=10000000

contrast of
By By B3 By Bs ... estimated ,
parameters C ﬂ

T =
variance »e , N
\I estimate \I SZC IﬂV(/YX)C
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Statistical Inference

=15, + 05, + 053 + 0fs+ -
contrast of

¢c’=10000000 estimated
b ]
parameters C ﬂ

T =
variance ’s vy
B1 B2 By By Bs - \I estimate \I $c an(X/Y)C

= Doing this for every single voxel in watel oo |
the brain will result in an image Ll
= in this image, voxels are darker if e P ol
our model fits the data very well R -
(explains a lot of the data) i WCT
\ = We will do a lot of tests and we

need to correct for that later
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Statistical Inference — an example

We want to know in which voxels of the brain we cause an increase in BOLD
signal when our subject listens to words

c’™=10000000

B1 B2 Bs Pa Ps ---
- "

CRICOS Provider No 00025B

Threshold T = 3.2057 {p<0.001}

(ZE) P uncorrected Mm mm  mm
13.94 Inf 0.000 -63 -27 15
12.04 Inf 0.000 -48 -33 12
11.82 Inf 0.000 -66 -21 6
13.72 Inf 0.000 57 -21 12
12.29 Inf 0.000 63 -12 -3
9.89 7.83 0.000 57 -39 S
7.39 6.36 0.000 36 -30 -15
6.84 5.99 0.000 51 0 48
6.36 5.65 0.000 -63 -54 -3

O
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Statistical Inference - Summary

« (Contrast c = linear combination of parameters: ¢’ 3

» this means we select the betas we want to look at

contrast of

estimated R
parameters c ﬂ
T= -
variance 2 s VL
\I Setimate \I s¢c’inv(X'X)c
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Statistical Inference — Summary

This is how the output looks in SPM

beta ???7? images

f=(XTX)*X"y

ResMS image
AT A
A E &
(72 =
N—p

con_"???7? image

c' 3

spmT_?7?7?? image

SPM{t}
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Statistical Inference — F-tests

» F tests can be used to compare different models
» The test statistic is the ratio of explained variability and unexplained

variability (error)

F

RSS, — RSS
oC

RSS

_’ RSSO

.-.-.-OX

Reduced model?

CRICOS Provider No 00025B
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Statistical Inference — F-tests

Example: Should we include the realignment parameters in our model (full
model) or can we ignore them (reduced model)

contrastisi

= Yes, we should use the
full model, because the
regressors explain noise
in regions we are

2 Design matrx ° interested in
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Orthogonality of regressors

What happens if my regressors are partly
explaining the same and are not orthogonal to
each other?
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Orthogonality of regressors

* These regressors are orthogonal to each other
* No shared variance

Variability described by X; Variability described by X,

TeStIng for Xl TeStIng for.XZ.. . THE UNIVERSITY
Variability in Y OF QUEENSLAND
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Orthogonality of regressors

These regressors are correlated to each other
We only explain the variability which is not shared between them!

Testing for X;

Variability described by X;
x Aq paquossp Aljiqelren

L THE UNIVERSITY
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Orthogonality of regressors

These regressors are correlated to each other
We only explain the variability which is not shared between them!

Testing for X,

Variability described by X;
¢x Ag paquossp Alljiqenren

AUSTRALIA
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Orthogonality of regressors

The degree of correlation is plotted in SPM

» The more overlap the
regressors have the
less variance can be
explained

* In a contrast the
regressors of interest
should be as little
correlated as possible!

i o o o o o oo o i o o o o

design orthogonalty

MeaS::l;II: Elbas_c.kv—alcﬁir?:acffsggZ:oi?ﬁlje hetmeen colurang of dezign matix % THE UNIVERSITY
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How to estimate the efficiency of a
design?

This question can only be answered concerning a specific contrast!
= The same design can be efficient for one contrast and inefficient for another!!!

*How?
« The aim is to minimize the standard error of a t-contrast
 This can be calculated using the Design Matrix X, and a contrast vector ¢
» Design Efficiency = 1/(c*inv(X“*X)*c‘);
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How can we optimize a design?

contrast of

estimated C ’ﬁ c’ ﬂ

parameters _ =

T = =

\I variance -~ yar(c” ) \I s2¢’ V(X 'X)e

estimate

» for maximal T we want minimal contrast variability
(Friston 1999)

» This can be calculated using the Design Matrix X, and a
contrast vector ¢ (we assume noise variance S?is
unaffected by change in Design Matrix X)

» Design Efficiency = 1/(c * inv(X" * X) * ¢);
> The design efficiency values are relative and not

absolute values and can only be compared in
similar designs (e.g. same experimental length)!
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How can we optimize a design?

-Convolving regressors with the Dominant frequency

HRF can be seen as a filter
(Josephs & Henson, 1999)

-We want to maximise the signal
passed by this filter

Power

-Dominant frequency of canonical
HRF is ~0.04 Hz

*The most efficient design is a

sinusoidal modulation of neural | . . |

activity with period ~25s (e.g., 0 Joos 01 015 02 025
F H

boxcar with 12.5s on/ 12.5s off) requency (7

THE UNIVERSITY
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How can we optimize a design?

Example - Blocked (20s); SOA = small
Stimulus (“Neural”) HRF Predicted Data

) p—

Time (s) Time (s) Time (s)
0 16 32 48 64 80 0 5 10 15 20 25 30 0 16 32 48 64 80

Frequency

Domain

. . . ' THE UNIVERSITY
quite efficient! OF QUEENSLAND
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How can we optimize a design?

Example — how not to do it: Blocked (80s); SOA = 4s

Stimulus (“Neural”) HRF Predicted Data
Time (s) Time (s)

Data is
Frequency , s | filtered
Domain : 2 | out!!!
(Hz)
M) 0 005 01 015 02 | c|>o!5 — 015Freq (H;)2
| THE UNIVERSITY
Never have too long blocks! OF QUEENSLAND
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How can we optimize a design?

Example — Randomized: SOAmin = 4s
Stimulus (“Neural”) HRF Predicted Data

®

Time (s) Time (s) Time (s)
0 32 64 96 128 160 0 5 10 15 20 25 30 0 32 64 96 128 160

Frequency

Domain

OF QUEENSLAND

AUSTRALIA
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How can we optimize a design?

Example — The perfect design: sinusoidal with f = 1/33s

Stimulus (“Neural”) HRF Predicted Data

®
1

Time (s) Time (s)
o] 16 32 48 64 80 0 5 10 15 20 25 30 0 16 32 48 64 80

Frequency

Domain

The sinusoidal places the energy in the frequency domain T TINPVEREITY
at exactly the right position /) OF QUEENSLAND
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How can we optimize a design?

Blocked designs are generally most efficient with short Stimulus Onset Asynchronys

SOAs
( ) Stimulus (“Neural”) Predicted Data (after convolution with HRF)

6 32 48 80
32 48

Not very efficient...

Very Inefficient...

/W/\ More Efficient

Tme(
an

Tme(

Even More Efficient

THE UNIVERSITY
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Efficiency for multiple event types

Lefficiency”

L]
T

Differential Effect (A-B)

CRICOS Provider No 00025B

If you are interested in
differential effects
only, it is ok to use

short SOAs

If you are interested in
differential and
common effects then
you could use long
SOAs or ...

e.g.. ABABABABABAB
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Efficiency for multiple event types

Using null
events you get
a design which

Is efficient for
differential and
common
effects at short

SOAs %
ol ki

,efficiency”

L5
T

e ——
D ; o e - - . SOAIns
S0
e.g.: AB-BAA--B---ABB 7 THE UNIVERSITY

\ OF QUEENSLAND
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Efficiency - Detection versus Estimation

*Detection power

= Detect a response
« maximal in blocked designs

*Estimation efficiency

« = Estimate the shape of a response
« maximal in randomised designs
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Summary

*An optimal design for one contrast may not be optimal for another (it
IS crucial to know your hypotheses BEFORE you design the
experiment)

*With randomized designs, optimal SOA for differential effect (A-B) is
minimal SOA (assuming no saturation), whereas optimal SOA for
main effect (A+B) is 16-20s

Inclusion of null events improves efficiency for main effect at short
SOAs (at cost of efficiency for differential effects)

*If order constrained, intermediate SOAs (5-20s) can be optimal
If SOA constrained, pseudorandomised designs can be optimal

*General advice: Keep the subject as busy as possible
] % THE UNIVERSITY
with your task OF QUEENSLAND
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Hands on / Homework ©

1.  Open the Batch Editor in SPM and Select
« SPM -> Stats -> fMRI model specification (design only)

Batch Editor - | Od

Eile Edit Wiew BEEIN EBasiclO e
O - | Ee Temporal b L
Module List Spatial P it Module
Mo Modules in Stats ] MRl model specification -
M JEEG [ fMEl model specification {(design onk
LItil b fMEl data specification
Tools k Factorial design specification
Edit Defaults Madel estimation

Contrast Manager
Fesults Feport

Bayesian Model Selection r

Physio/Psycho-FPhysiologic Interaction

% THE UNIVERSITY
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Hands on

-We want to investigate a simple On / Off paradigm
«20 s on
20 s off

THE UNIVERSITY
N OF QUEENSLAND

&5 AUSTRALIA

CRICOS Provider No 000258 Create change



Hands on

1.  Select a directory where to store the SPM.mat file
2.  Enter parameters like shown in the image:

Batch Editor = O

File Edit View 5SFM BasiclO
DEE b
Module List Current Module: TMRI model specification (design only)

fMRl model specificati{=| |Help on: fMEl model specification (design onl
Directory
Timing parameters

LesignEfficiency/

. Units for design Seconds
. Interscan interval 2
. Microtime resolution 15

. Microtime onset 8

Data & Design

. Subject/Session
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. Conditions
. Multiple conditions
. Regressors -
. Multiple regressors

.. High-pass filter 128

Factorial design

Basis Functions -

Current ltem: Conditions
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Hands on

1.  Enter Parameters for condition A
 Name: A
* Onsets: 0:40:560 (This creates a vector from 0 to 560 in steps of 40)

» Durations: ones(15,1) * 20 (This creates a vector of 15 ones and multiplies it
by 20 -> we end up with a vector of 15 twenties)

2.  Enter Parameters for condition B
 Name: B

* Onsets: 20:40:600

» Durations: ones(15,1) * 20

*Check that what you have entered makes sense
«Save your design
*Hit the run button ©
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Hands on

1.  Click on Review in the SPM main menu and select the SPM.mat we just
created

2.  Hit Design -> Design Orthogonality

Looks good ©
No correlated regressors
The breaks look reasonable
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Hands on

CRICOS Provider No 00025B

In the SPM Menu click
on Review and load
the SPM.mat file you
just created.

Click on Design ->
Explore -> Session 1 -
> A

Looks good ©

Time domain
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- Our energy is at the right spot and not filtered out — yippie {
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Hands on

1.  Go to your matlab command line and load the design matrix:
o X=tmp.xX.X;
2.  Define your contrast of interest:
 c¢=[1-10]
Compute the design efficiency
 varEtaHat = c*inv(X"*X)*c';
» DesignEfficiency = 1/varEtaHat;

« Our Design Efficiency for this design is
e c=[1-10]:79.5
e c=[-110]:79.5
« ¢c=[110]: 0.56 ->oh ... we are 142 times more inefficient
for the common effect than for the difference effect ®
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Hands on

Lets make our design better for the common effect
lets insert null trials, where the subject is not engaged in task A or B

1.  Enter Parameters for condition A
« Name: A
» Onsets: 080120 200 240 320 360 440 480 560
» Durations: ones(10,1) * 20

2.  Enter Parameters for condition B
« Name: B
» Onsets: 20 60 140 180 260 300 380 420 500 540
* Durations: ones(10,1) * 20

Save your design

Hit the run button © THE UNIVERSITY
OF QUEENSLAND
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Hands on

Statistical analysis: Design orthogonality

1. Click on Review and select the SPM.mat
we just created

2. Hit Design -> Design Orthogonality

Sn(1) constant

Looks good ©
No correlated regressors
The breaks look reasonable

Snil) A*bF(L)
Sn{1) B*bf(1)
Snil) constant
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Hands on

1.  Go to your matlab command line and load the design matrix:
o X=tmp.xX.X;
2.  Define your contrast of interest:
 c¢=[1-10]
Compute the design efficiency
 varEtaHat = c*inv(X"*X)*c';
» DesignEfficiency = 1/varEtaHat;

« Our Design Efficiency for this design is
« c=[1-10]: 52.8 (previous: 79.5)
 c=[-110]: 52.8 (previous: 79.5) -> cool, we are still efficient for the
difference effect
« c=[110]: 17.6 (previous: 0.56) -> and we are only 3 times less
efficient for the common effect ©
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Hands on

Create a design with a very long block length and see
what happens

*Create a design with very short block length and see
what happens

Create a design where your regressors are correlated
and see what happens (hint: you create correlating
regressors by overlapping your regressor slightly in
time, then they get a shared variance because they
explain the same thing)
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