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(Re-)Sources

•

•

•

•

•

•

http://imaging.mrc-cbu.cam.ac.uk/imaging/CbuImaging
http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=spm
http://www.fil.ion.ucl.ac.uk/spm/course/video/
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Stimuli

SOA

=

16s

Terms & Definitions

Stimulus 

Onset  

Asynchrony



CRICOS Provider No 00025B

Terms & Definitions

•

•

•

•

Series of events
Delta

functions

Boxcar 

function

Sustained epoch
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Terms & Definitions

b=5
b=9

b=3 b=11

SOA = 2s

SOA = 4s

An “epoch” 

model will 

estimate 

parameters 

(b) that 

decrease

with SOA

An “event” 

model will 

estimate 

parameters 

(b) that 

increase

with SOA



CRICOS Provider No 00025B

Terms & Definitions

•

•

data

O1 O2 O3 N1 N2 N3

N1 N2 N3

“Event” 

model

O1 O2 O3

“Epoch” 

model

both are

blocked

designs!

fitted model
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Parameter estimates

Design matrix

Template

Kernel

Gaussian 

field theory
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The General Linear Model

7 cycles of rest and 

listening

time
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The General Linear Model

single 

voxel 

time series

time

What we know.

What we measure in one region
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The General Linear Model

time

single 

voxel 

time series

What we know.

What we measure in another 

region
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The General Linear Model

amplitude

Temporal 

series fMRI

each Volume 

contains about

2 million voxels

at one time 

point

time course

of one voxel

For every voxel

in the brain we

have one time 

course!
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The General Linear Model

regressor is fitted to the data by height 

adjustment, the beta tells us the height of 

the regressor to get the smallest error!

The „height“ of the fitted

regressor is the b value

(-> you end up with 2 

million betas in the brain -

for each voxel there is one 

beta)

b
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The General Linear Model

•

•

•

 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

𝜀~𝑁(0, 𝜎2𝐼)
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The General Linear Model

•

•

•

•

•

•

•

•

 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

 𝑦 = 𝑋  𝛽

𝑒 = 𝑦 −  𝑦

𝑒 = 𝑦 − 𝑋  𝛽

𝑒′𝑒
𝑒′𝑒 = 𝑦 − 𝑋  𝛽 ′(𝑦 − 𝑋  𝛽)

𝑒′𝑒 = 𝑦′y − 2  𝛽′𝑋′𝑦 +  𝛽′𝑋′𝑋  𝛽
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The General Linear Model

= + +

voxel time 

series

90 100 110

experimental
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(‘regressor’)
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The General Linear Model

= + +

voxel time 

series

90 100 110

experimental

Manipulation

(‘regressor’)

-1  0  1 1

Mean value

0  100

Residual

Error

b1 = 10 b2 = 100
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The General Linear Model

= b1 + +

es= + +Y
error

xx

b2

b1 b2 1f(t)
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The General Linear Model

= +

e= b +Y X

x

x

b1

b2
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The General Linear Model

•
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The General Linear Model

•



CRICOS Provider No 00025B

The General Linear Model – Problem 1

The regressors are convolved with 

the so called ‘‘haemodynamic 

response function (HRF)

Brief

Stimulus

Undershoot

Initial

Undershoot

Peak
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The General Linear Model – Problem 1

blue = data

red = predicted response, NOT taking into account the HRF

green = predicted response, convolved with HRF
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The General Linear Model – Problem 1

In SPM one usually uses 

an informed basis set to 

account for different 

shapes of the HRF

Canonical

Temporalal Derivative

Dispersion Derivative
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The General Linear Model
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The General Linear Model

blue = data

red = predicted response, NOT taking into account low-frequency drift

green = predicted response, taking into account low-frequency drift

black = mean + low-frequency drift
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The General Linear Model
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The General Linear Model

= 1 + 2

Q1 Q2V
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The General Linear Model - Summary

•

•

•
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Statistical Inference

T = 

contrast of

estimated

parameters

variance

estimate
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Statistical Inference

T = 

contrast of

estimated

parameters

variance

estimate

= 

s2c’inv(X’X)c

c’b
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Statistical Inference

The contrast vector c is just a vector with 1s and 0s and it selects 

the betas we want to investigate

T = 

contrast of

estimated

parameters

variance

estimate

= 

s2c’inv(X’X)c

c’b

= 1𝛽1 + 0𝛽2 + 0𝛽3 + 0𝛽4 + ⋯
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Statistical Inference

c’ = 1 0 0 0 0 0 0 0

b1 b2 b3 b4 b5 ....

T = 

contrast of

estimated

parameters

variance

estimate

= 

s2c’inv(X’X)c

c’b

= 1𝛽1 + 0𝛽2 + 0𝛽3 + 0𝛽4 + ⋯
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Statistical Inference

c’ = 1 0 0 0 0 0 0 0

b1 b2 b3 b4 b5 ....

T = 

contrast of

estimated

parameters

variance

estimate

= 

s2c’inv(X’X)c

c’b

 Doing this for every single voxel in 

the brain will result in an image

 in this image, voxels are darker if 

our model fits the data very well 

(explains a lot of the data)

 We will do a lot of tests and we 

need to correct for that later

= 1𝛽1 + 0𝛽2 + 0𝛽3 + 0𝛽4 + ⋯
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Statistical Inference – an example

Threshold T = 3.2057  {p<0.001}

p uncorrected( Z
) Mm    mm mm

13.94 Inf 0.000 -63 -27  15
12.04 Inf 0.000 -48 -33  12
11.82 Inf 0.000 -66 -21   6
13.72 Inf 0.000 57 -21  12
12.29 Inf 0.000 63 -12  -3
9.89 7.83 0.000 57 -39   6
7.39 6.36 0.000 36 -30 -15
6.84 5.99 0.000 51   0  48
6.36 5.65 0.000 -63 -54  -3
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Statistical Inference - Summary

• b

•

T = 

contrast of

estimated

parameters

variance

estimate

= 

s2c’inv(X’X)c

c’b
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Statistical Inference – Summary

con_???? image

b̂Tc

ResMS image
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T
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spmT_???? image

SPM{t}

yXXX TT 1)(ˆ -=b

beta_???? images
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Statistical Inference – F-tests

•

•

RSS

RSS

RSSRSS
F

-
 0

Or Full model ? 

X1X0

Reduced model? 

X0

RSS0
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Statistical Inference – F-tests

Design matrix
2 4 6 8

10

20

30

40

50

60

70

80

contrast(s)

 Yes, we should use the 

full model, because the 

regressors explain noise 

in regions we are 

interested in



CRICOS Provider No 00025B

Orthogonality of regressors

What happens if my regressors are partly 

explaining the same and are not orthogonal to 

each other?
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Orthogonality of regressors

•

•

Variability described by 𝑋2Variability described by 𝑋1

Variability in Y
Testing for 𝑋1 Testing for 𝑋2
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Orthogonality of regressors
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Orthogonality of regressors
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Orthogonality of regressors

• The more overlap the 

regressors have the 

less variance can be 

explained

• In a contrast the 

regressors of interest 

should be as little 

correlated as possible!
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How to estimate the efficiency of a 
design?

•



•

•

•

•
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How can we optimize a design?

 for maximal T we want minimal contrast variability 
(Friston 1999)

 This can be calculated using the Design Matrix X, and a 
contrast vector c (we assume noise variance s2 is 
unaffected by change in Design Matrix X)

 Design Efficiency = 1/(c * inv(X‘ * X) * c‘);

 The design efficiency values are relative and not 
absolute values and can only be compared in 
similar designs (e.g. same experimental length)!

T = 

contrast of

estimated

parameters

variance

estimate

= 

s2c’ inv(X’X)c

c’b

var(c’ b)

c’b
= 
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How can we optimize a design?

•

•

•

•

Dominant frequency 
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Frequency

Domain

Time 

Domain

How can we optimize a design?

 =

 =

Stimulus (“Neural”) HRF Predicted Data

quite efficient!
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Frequency

Domain

Time 

Domain

How can we optimize a design?

 =

 =

Stimulus (“Neural”) HRF Predicted Data

Never have too long blocks!

Data is

filtered

out!!!
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Frequency

Domain

Time 

Domain

How can we optimize a design?

 =

 =

Stimulus (“Neural”) HRF Predicted Data

Randomised design spreads power over frequencies
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Frequency

Domain

Time 

Domain

How can we optimize a design?

 =

 =

Stimulus (“Neural”) HRF Predicted Data

The sinusoidal places the energy in the frequency domain 

at exactly the right position
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How can we optimize a design?

Blocked designs are generally most efficient with short Stimulus Onset  Asynchronys 

(SOAs) 
Stimulus (“Neural”) Predicted Data (after convolution with HRF)

Very Inefficient…Fixed SOA 

4s

Fixed SOA 

16s
Not very efficient…

Randomized 

SOA 

4s

More Efficient

Blocked SOA

4s Even More Efficient
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Efficiency for multiple event types

If you are interested in 

differential effects

only, it is ok to use

short SOAs

If you are interested in 

differential and

common effects then 

you could use long 

SOAs or …

Differential Effect (A-B)

Common Effect (A+B)

SOA in s

„e
ff
ic

ie
n
c
y
“

e.g.: ABABABABABAB
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Efficiency for multiple event types

Using null 

events you get

a design which

is efficient for

differential and

common

effects at short

SOAs

Differential Effect (A-B)

SOA in s

„e
ff
ic

ie
n
c
y
“

Common Effect (A+B)

Differential Effect with null events (A-B)

Common Effect with null events (A+B)

e.g.: AB-BAA--B---ABB
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Efficiency - Detection versus Estimation

•Detection power
• = Detect a response

• maximal in blocked designs

•Estimation efficiency
• = Estimate the shape of a response

• maximal in randomised designs
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Summary

•An optimal design for one contrast may not be optimal for another (it 
is crucial to know your hypotheses BEFORE you design the 
experiment)

•With randomized designs, optimal SOA for differential effect (A-B) is 
minimal SOA (assuming no saturation), whereas optimal SOA for 
main effect (A+B) is 16-20s

•Inclusion of null events improves efficiency for main effect at short 
SOAs (at cost of efficiency for differential effects)

•If order constrained, intermediate SOAs (5-20s) can be optimal

•If SOA constrained, pseudorandomised designs can be optimal 

•General advice: Keep the subject as busy as possible 

with your task
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Hands on / Homework 

•
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Hands on

•

•

•
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Hands on



CRICOS Provider No 00025B

Hands on

•

•

•

•

•

•

•

•

• 
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Hands on

Looks good 

No correlated regressors

The breaks look reasonable
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Hands on

Looks good 

Our energy is at the right spot and not filtered out – yippie 



CRICOS Provider No 00025B

Hands on

•

•

•

•

• Our Design Efficiency for this design is

• c=[1 -1 0]: 79.5

• c=[-1 1 0]: 79.5 

• c=[1 1 0]: 0.56 -> oh … we are 142 times more inefficient 

for the common effect than for the difference effect 



CRICOS Provider No 00025B

Hands on

•

•

•

•

•

•


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Hands on

Looks good 

No correlated regressors

The breaks look reasonable
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Hands on

•

•

•

•

• Our Design Efficiency for this design is

• c=[1 -1 0]: 52.8 (previous: 79.5)

• c=[-1 1 0]: 52.8 (previous: 79.5) -> cool, we are still efficient for the

difference effect

• c=[1 1 0]: 17.6 (previous: 0.56) -> and we are only 3 times less

efficient for the common effect 
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Hands on

•Create a design with a very long block length and see 

what happens

•Create a design with very short block length and see 

what happens

•Create a design where your regressors are correlated 

and see what happens (hint: you create correlating 

regressors by overlapping your regressor slightly in 

time, then they get a shared variance because they 

explain the same thing)


